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Abstract

This technical memorandum describes a nonlinear guidance law for a
single-missile single-target engagement. The guidance relies on the concepts of
Lyapunov stability and backstepping, which are constructive methods in
nonlinear control theory. The design of the guidance law allows taking into
account the nonlinear relative kinematics between the missile and the target, and
ensuring ultimate boundedness of the missile-target system trajectories provided
the estimation error of the target acceleration is bounded in magnitude. In other
words, despite the nonlinear kinematics between the missile and the target, the
guidance scheme is guaranteed to result in a relatively small miss distance
between the missile and the target.

There are two steps in designing the nonlinear guidance law. In the first step,
using the fully nonlinear missile-target engagement kinematics, an appropriate
Lyapunov function candidate is selected and a state-feedback law is obtained.
Closed-loop pole placement using linear matrix inequalities provides an ultimate
bound to the maximum allowable miss distance, assuming idealized flight control
dynamics; that is, infinitely fast reaction times for the missile. In the second step
of the guidance law, the control law is robustified by means of a high-gain
backstepping approach, taking into account the uncertain flight control dynamics
of the pursuer missile as an uncertain although bounded time constant.
Numerical simulations of the nonlinear guidance in closed-loop with a missile
modeled as an interval second-order transfer function and a maneuvering target
demonstrate satisfactory performances when compared to modern and classical
guidance laws, such as proportional navigation guidance. Despite the uncertainty
on the missile flight control system, which is usually the case in practice, the
guidance law achieves small miss distances against highly maneuverable targets.
Uncertainties may arise due to a variety of reasons. For instance, uncertainties
may be due to variations in the missile aerodynamics over the flight envelope,
unexactly known aerodynamic performance, or low-order approximate modeling
of the flight control system. However, it is important to note that the satisfactory
performance of the nonlinear guidance comes at the expense of potentially large
acceleration demands in the early part of the terminal phase of the engagement,
when the guidance law is applied. There is therefore a trade-off to be made
between the reduction of the miss distance and the acceleration demands.
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Résumé

Ce mémorandum technique présente une loi de guidage non linéaire pour un
engagement un contre un. La méthode de guidage repose sur les concepts de
stabilité de Lyapunov et de rétrogradation (backstepping). Ces dernières sont des
méthodes constructives dans le domaine de la commande non linéaire. La
conception de la loi de guidage permet de prendre en compte la cinématique non
linéaire entre le missile et la cible, et assure une borne ultime des trajectoires du
système missile-cible dans la mesure où l’erreur d’estimation de l’accélération de
la cible soit bornée en amplitude. Autrement dit, malgré la cinématique non
linéaire entre le missile et la cible, la méthode de guidage présentée garantit une
erreur de passage relativement petite entre le missile et la cible.

La conception du guidage non linéaire se fait en deux étapes. Premièrement, une
fonction de Lyapunov est sélectionnée et une loi de rétroaction par état est
obtenue en tenant compte de la cinématique non linéaire entre le missile et la
cible. Un placement de pôles utilisant les matrices d’inégalites linéaires permet
d’obtenir une borne ultime à l’erreur de passage, en supposant une dynamique de
commande de vol idéale. Deuxièmement, la loi de commande est rendue robuste
au moyen de l’approche backstepping tout en prenant en compte la dynamique
incertaine de la commande de vol sous la forme d’une constante de temps
incertaine. Des simulations numériques du guidage non linéaire en boucle fermée
avec le système de commande de vol du missile, qui est modélisé comme une
fonction de transfert de deuxième ordre à intervalles, et d’une cible manoeuvrante
démontrent les performances obtenues avec la méthode proposée en comparaison
avec des méthodes dites modernes et traditionnelles de guidage telles que la
navigation proportionnelle. Malgré l’incertitude de la commande de vol du
missile, qui est généralement présente en pratique, le guidage non linéaire résulte
en de petites erreurs de passage contre des cibles hautement manoeuverables.
Cependant, il est important de noter que la performance du guidage non linéaire
a un coût. Il est possible que de larges accélérations soient nécessaires dans la
partie initiale de la phase terminale de l’engagement. Donc, il y a un compromis
à faire entre réduire l’erreur de passage et obtenir des accélérations acceptables.
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Executive Summary

Guidance is a key component of any missile. To achieve intercept, it is crucial
that the software provide appropriate control actions to strike maneuvering
targets. In this context, this technical memorandum presents a nonlinear
guidance law for single-missile, single-target engagement. The design of the
guidance law relies on nonlinear control theory, which is required in typical
missile-target engagement as the kinematics between the two vehicles are highly
nonlinear. The design of the guidance law allows taking into account the
nonlinear relative kinematics between the missile and the target, and ensuring
ultimate boundedness of the missile-target system trajectories provided the
estimation error of the target acceleration is bounded in magnitude. The
estimation of the acceleration of the target is not explicitly detailed in this
memorandum, and would possibly rely on a target state estimation algorithm.
Despite the nonlinear kinematics between the missile and the target, the
guidance scheme guarantees the achievement of a relatively small miss distance.

Despite the uncertainty on the missile flight control system, which is usually the
case in practice, the guidance law achieves small miss distances against highly
maneuverable targets. Simulation results showed a reduction of the miss
distance, in the case of highly maneuverable targets, up to a ratio of 5:1 when
using the proposed guidance law over other proportional navigation guidance
(PNG)-based techniques. PNG and its variants have been extensively studied
and used because of their computational simplicity and optimal performance in
the pursuit of non-maneuvering targets. However, as is well known, PNG may
become ineffective for the interception of highly maneuvering targets for which
nonlinearities of the missile-target configurations are predominant. However, it is
important to note that the satisfactory performance of the proposed nonlinear
guidance law comes at the expense of potentially large acceleration demands in
the early part of the terminal phase of the engagement, when the guidance law is
applied. This trade-off between reduction of miss distance and amplitude of
missile accelerations must be appropriately handled by the designer.

The guidance law has the potential to impact on military practice by providing
increased probabilities of intercepts despite imprecise knowledge of the
aerodynamics of the pursuer missile, imperfect target information, and relatively
high maneuvers of target, a capability that is not offered with currently used
guidance laws, such as the classical PNG.
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Sommaire

Le guidage est une composante clé de tout missile. Pour réussir l’interception, il
est crucial que le logiciel à bord du missile génère les actions de commande
appropriées pour frapper des cibles toujours plus manoeuverables. Dans ce
contexte, ce mémorandum technique présente une loi de guidage non linéaire
pour un engagement un contre un. La conception de la loi de guidage repose sur
la théorie de la commande non linéaire, qui est requise dans ce genre
d’engagements, puisque la cinématique entre le missile et la cible est hautement
non linéaire. Entre autres, les concepts de stabilité de Lyapunov et de
backstepping sont utilisés pour déveloper la loi de guidage non linéaire. Le
backstepping est une méthode constructive dans la théorie de la commande non
linéaire qui permet de stabiliser le missile autour de son point d’équilibre;
c’est-à-dire lorsque le missile est dans un triangle de collision avec la cible. La
conception de la loi de guidage permet de prendre en compte la cinématique non
linéaire entre le missile et la cible, et d’assurer une borne ultime des trajectoires
du système missile-cible en autant que l’erreur d’estimation de l’accélération de
la cible soit bornée en amplitude. La facon d’obtenir l’estimation de
l’accélération de la cible n’est pas décrite dans ce mémorandum.

Malgré la cinématique non linéaire entre le missile et la cible, la méthode de
guidage non linéaire garantit une erreur de passage relativement petite. La
conception du guidage non linéaire se fait en deux étapes. Premièrement, une
fonction de Lyapunov est sélectionnée et une loi de rétroaction par état est
obtenue en tenant compte de la cinématique non linéaire entre le missile et la
cible. Un placement de pôles utilisant les matrices d’inégalités linéaires permet
d’obtenir une borne ultime à l’erreur de passage, en supposant une dynamique de
commande de vol idéale. Deuxièmement, la loi de commande est rendue robuste
par l’approche backstepping tout en prenant en compte la dynamique incertaine
de la commande de vol sous la forme d’une constante de temps incertaine. Des
simulations numériques du guidage non linéaire en boucle fermée avec le système
de commande de vol du missile, qui est modélisé comme une fonction de transfert
de deuxième ordre à intervalles, et d’une cible manoeuvrante démontrent les
performances obtenues avec la méthode proposée en comparaison avec des
méthodes dites modernes et traditionnelles de guidage telles que la navigation
proportionnelle. Malgré l’incertitude sur la commande de vol du missile, qui est
généralement présente en pratique, le guidage non linéaire résulte en de petites
erreurs de passage contre des cibles hautement manoeuverables. Cependant, il
est important de noter que la performance du guidage non linéaire a un coût. Il
est possible que de larges accélérations soient nécessaires dans la partie initiale de
la phase terminale de l’engagement. Donc, il y a un compromis à faire entre
réduire l’erreur de passage et obtenir des accélérations acceptables.

La loi de guidage offre un potentiel certain pour influencer les pratiques militaires
en augmentant les probabilités d’interception malgré une connaissance imprécise
de l’aérodynamique du missile poursuivant, une information imparfaite provenant
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de la cible, et des manoeuvres importantes de la cible, une capacité qui est
inexistante avec des lois de guidage telles que la loi de navigation proportionnelle.
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1. Introduction

Proportional navigation guidance (PNG) [1] and its variants [2] have been
extensively studied and used because of their computational simplicity and
optimal performance in the pursuit of non-maneuvering targets [3]. However, as
is well known, PNG may become ineffective for the interception of highly
maneuvering targets for which nonlinearities of the missile-target configurations
are predominant [4].

Several nonlinear guidance laws have been proposed to tackle such guidance
problems. For example, [5] derived a command-line-of-sight guidance for
surface-to-air missiles using feedback linearization. [6] presented a guidance
strategy characterized by a switching between a feedback linearizing guidance,
when the missile is far from the intercept triangle, and PNG, when the missile is
in the vicinity of the collision course. The guidance law proposed in [6] is
effective for a wide range of headings; however, the guidance does not take into
account flight dynamics and the inherent uncertainties. [7] proposed a variable
structure nonlinear guidance and autopilot considering zero-effort miss. [8] used
differential geometry curve theory for the design of a guidance system for a class
of target behaviors. [9] proposed improving PNG by using the Lyapunov method
on the nonlinear missile-target system. The Lyapunov function candidate
proposed in [9] is the square of the line-of-sight (LOS) derivative and is valid for
both small-angle approximations to the missile-target kinematics and full
nonlinear kinematics, although ideal flight control dynamics are assumed. [10]
presents a nonlinear guidance using Lyapunov optimizing feedback control, where
a descent function is selected and a feedback control is chosen, based on steepest
and quickest descents, such that the descent function decreases at every state of
the nonlinear missile-target system. Given mild conditions, asymptotic stability
of the missile-target system can be achieved with the approach proposed in [10].
It was shown that such control law provides satisfactory performance against
maneuvering targets, and in the presence of measurement noise and flight control
dynamics expressed as time delay in the guidance loop. Circular navigation
guidance proposed in [11] is based on the idea of circular arc following,
theoretically warranting zero miss distance and desired impact angle provided
reasonable conditions are satisfied, although target maneuvers are not considered
in the synthesis.

It is clear that most novel nonlinear guidance synthesis and closed-loop analyses
consider ideal missile dynamics, although it is known that the missile flight
control constrains the performance achievable with the guidance loop [12]. For
instance, there is an inherent time constant associated with the missile flight
control in response to guidance commands, the actuator have their own dynamic
characteristics, and the missile under closed-loop control exhibits a varying
dynamical behavior throughout the flight envelope. Therefore, devising guidance
laws on the premise that the missile will react instantaneously to the commanded
accelerations is a limited, unrealistic approach. In this context, the work in [13]
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proposed an integrated robust guidance and autopilot law, which comprises a
zero-effort-miss guidance and a neural-network-based adaptive backstepping
controller. The integrated guidance and control scheme proposed in [13]
compensates for the error dynamics due to the pursuer missile modelling
uncertainties and is shown to result in small miss distances and robust
aerodynamic responses. Recently, [14] proposed an adaptive nonlinear guidance
law using sliding mode control, where uncertainties in the target acceleration and
in the dynamics of the flight control of the pursuer missile are taken into account
by means of parameter adaptation. In [14], the guidance and the flight control
loops are integrated in the model of the missile-target system. Nonlinearities of
the kinematics are taken into account in the guidance synthesis, although
trigonometric functions are approximated by assuming small angles. The flight
control dynamics are modelled as a second order state-space model to which is
added an exogenous disturbance representing approximation errors due to the
use of curve fitting techniques in the modelling of aerodynamic parameters;
however, it is unclear how the uncertainties impact the missile time constant,
which can substantially fluctuate throughout the flight envelope.

In this technical memorandum, a Lyapunov-based nonlinear homing guidance
law is presented. The guidance synthesis takes into account both the algebraic
nonlinearities involved in the missile-target kinematics and the uncertain flight
control dynamics. There is no simplification in the form of small angle
approximation. Intuitively, considering the full nonlinear kinematics involved in
missile-target engagements is expected to improve the performance of the
pursuer missile, i.e. to provide small miss distances despite maneuvers of the
target. Furthermore, considering uncertainties involved with the missile flight
control system in the guidance synthesis is expected to warrant intercept despite
the lack of perfect information on the missile’s aerodynamics and on the target
state. The imperfect information on the target state can be assumed to occur
due to seeker inaccuracies. In this technical memorandum, flight control
dynamics are modeled as a low-order system with an uncertain, time-varying
time constant. The proposed guidance synthesis is divided into two steps. In the
first step, a state-feedback law is obtained with the selection of an appropriate
Lyapunov function candidate. The state is such that it comprises information of
both pursuer missile and target. A Linear Matrix Inequality (LMI) [15], [16] pole
characterization provides an ultimate bound to the maximum allowable miss
distance assuming the flight control dynamics are ideal and the error in the
estimate of the target acceleration is bounded. In the second step, the control
law is robustified by means of a high-gain backstepping approach. Thus, even
without perfect information on the missile flight control dynamics, the guidance
scheme is guaranteed to provide satisfactory performance. As is well known,
differentiating signals in real-time is to be avoided due to noise amplification.
Thus, a high-gain approach, which avoids the need for computing derivatives, is
used to dominate the uncertainty represented by the time constant [17].
Numerical simulations of the proposed guidance in closed-loop with an interval
second-order missile transfer function and a maneuvering target demonstrate
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superior performances than those obtained with modern and classical guidance
laws despite uncertainties in the flight control system and high maneuverability
of the target. Furthermore, it is shown that using target acceleration estimates in
the guidance law results in relatively small miss distance even when the
purser-evader maneuverability ratio [18] approaches unity. The latter case is
particularly difficult to handle with classical guidance schemes such as PNG.

The technical memorandum is organized as follows. Chapter 2 provides the
model of the engagement and the assumptions. The nonlinear guidance law is
described in Chapter 3. Numerical simulations of a missile pursuing a
maneuvering target with a sinusoidal-type normal acceleration with constant
amplitude and pulsation are given in Chapter 4. Finally, the concluding remarks
are presented in Chapter 5.
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2. Modeling of engagement kinematics and dynamics

2.1 Missile Flight Control System

The system that drives the missile to the required accelerations is the so-called
missile flight control system. Actuators may be DC and torque motors whereas
sensors are typically rate gyros and accelerometers. Flight control systems are
designed for roll control and for lateral and longitudinal acceleration tracking,
where the acceleration commands are issued by the guidance system [12]. It is
assumed that the flight control system is well designed for all of the operating
points; that is, the control system provides satisfactory acceleration tracking and
rate stabilization. Schematics of the flight control and guidance systems are
shown in Figure 1. In the figure, the direction of the information flow is
represented by the arrows.

Autopilot

Guidance
Law

Pursuer (Missile)

Evader (Target)

Flight Control System

Autopilot

Guidance
Law

Pursuer (Missile)

Evader (Target)

Flight Control System

Figure 1: Missile guidance and control

Flight control system dynamics approximated as a first-order linear uncertain
system allows to incorporate variations of some of the key parameters over the
flight envelope while providing tractability in the guidance problem. Such
approximation is not new and has been done in works such as [19]. Here, the
flight control system dynamics are from the commanded acceleration to the
actual missile acceleration normal to line-of-sight. Flight control system therefore
corresponds to the missile in closed-loop with autopilot, as shown in Figure 1.
Consider the first-order dynamics for a missile flight control system given as

τ1(t)
dnm(t)

dt
= −nm(t) + ag(t) (1)

where nm is missile acceleration normal to the line-of-sight, ag is commanded
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acceleration, and the time constant of the flight control system is such that

0 < τ1 ≤ τ1(t) ≤ τ1,

0 < τd1 ≤
¯̄̄̄
dτ1(t)

dt

¯̄̄̄
≤ τd1 .

The autopilot is assumed to have been designed such that parameter τ1(t) has a

finite upper bound τd1 . The lower (τ1 > 0) and upper (0 < τ1 < τ1) bounds on the
time constant can be determined from the behavior of the missile over the flight
envelope of interest. Clearly, the missile flight control system will be behaving
within these bounds as the aerodynamics are usually not perfectly known. The
model given by (1) is assumed to preserve the overall time response
characteristics of the actual missile flight control system. It should be noted that
(1) with bounds τ1 and τ1 can be obtained by performing order reduction on a
high-fidelity model of the missile flight control system dynamics by means of well
established techniques such as balanced truncation [20].

2.2 Kinematics

The three-dimensional engagement of a missile for the intercept of a target is
relatively complex. A more tractable two-dimensional engagement can be studied
by assuming that the lateral and longitudinal planes are decoupled, as typically
achieved through roll control [19]. The two-dimensional missile-target
engagement geometry is shown in Figure 2, where vm is missile speed, and vt and
nt are the target speed and the target normal acceleration, respectively.

x

y
vm

vt

Line of sight

r

Missile

Target

λ

α

tθ

nm

nt

Inertial frame

β

x

y
vm

vt

Line of sight

r

Missile

Target

λ

α

tθ

nm

nt

Inertial frame

β

Figure 2: Engagement geometry - Collision triangle
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The range r between the missile and the target is related to the closing velocity
vcl as follows

vcl(t) = −dr(t)
dt

. (2)

The LOS angle λ(t) ∈ ]−π/2;π/2[ is the angle between the LOS and the fixed
reference. The sine of the LOS angle is given by y(t), which is the relative
separation between the missile and the target perpendicular to the fixed
reference x-axis, over the range r(t); that is,

sinλ(t) =
y(t)

r(t)
. (3)

From now on, reference to the independent time variable t is omitted unless
stated otherwise. To obtain the state-space model for the missile-target
kinematics, (3) is differentiated with respect to time. This yields

dλ

dt
cosλ =

dy
dt r − y drdt
r2

. (4)

Then, taking time derivative of (4), results in

d2λ

dt2
cosλ−

µ
dλ

dt

¶2
sinλ =

1

r

d2y

dt2
− 2dλ

dt

dr

dt
cosλ− 1

r

d2r

dt2
sinλ (5)

where the relative acceleration, d2y/dt2, can be expressed as

d2y

dt2
= at − am = nt cosβ − nm cosλ. (6)

For the missile-target kinematics, the following state variables are defined

x1 = sinλ− sinλo, (7)

x2 =
dx1
dt
, (8)

where λo represents a fixed LOS angle at equilibrium. Angle λo can be
interpreted as a desired kinematic constraint imposed on the missile-target
behavior until intercept. Then,

dx1
dt

=
dλ

dt
cosλ,

dx2
dt

=
d2λ

dt2
cosλ−

µ
dλ

dt

¶2
sinλ. (9)
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The missile-target kinematics given above can be formulated alternatively with
the following state-space form

"
dx1
dt
dx2
dt

#
= Ax+Bf

Ã
r,
dr

dt
,
d2r

dt2
,λ,

dλ

dt
, at, am

!
(10)

x1(t0) = sinλ(t0)− sinλ0 (11)

x2(t0) =
dλ

dt
(t0) cosλ(t0) (12)

where t0 is initial time (defined as zero in this memorandum),

A =

∙
0 1
0 0

¸
, B =

∙
0
1

¸
, x =

∙
x1
x2

¸
, (13)

and

f(r, dr
dt
, d

2r
dt2
,λ, dλ

dt
, at, am) = −am

r
+ g(r, dr

dt
, d

2r
dt2
,λ, dλ

dt
, at)

g(r, dr
dt
, d

2r
dt2
,λ, dλ

dt
, at) =

at
r
− 2

r
dλ
dt

dr
dt
cosλ− 1

r
d2r
dt2

sinλ.
(14)

Such equations correspond to the engagement geometry of Fig. 2.

2.3 Assumptions and definitions

Assumption 1 (Measurements) Even though measurements are often corrupted
by noise, the present work is confined to deterministic signals exempt from noise.
Furthermore, sensor dynamics are assumed to be significantly faster than
missile-target dynamics so that they can be omitted.

Assumption 2 (Target Behavior) (a) The behavior considered is a maneuvering
target with estimates bat(t) available to the guidance law as delayed target
accelerations, i.e. bat(t) = at(t− τ), where τ ∈ R+. Note that R+ represents the
set of positive real numbers, and R is the set of real numbers. With the target
acceleration being bounded as |at(t)| < at

2 , where upper bound at ∈ R, then|bat(t)− at(t)| < at. (b) The target jerk is bounded, i.e. |dat/dt| < jt ∈ R+.
Target estimates may be obtained by means of on-board processing. Hence,
Assumption 2 provides a realistic limitation taken into account in the guidance
synthesis.

Assumption 3 (Missile-Target Range) The range r between the missile and the
target, and the first two time derivatives of the range are bounded as follows

rm < r < rM , rm, rM ∈ R, (15)¯̄̄̄
dr

dt

¯̄̄̄
< rvM ∈ R, (16)
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¯̄̄̄
¯d2rdt2

¯̄̄̄
¯ < raM ∈ R. (17)¯̄̄̄

¯d3rdt3
¯̄̄̄
¯ < rjM ∈ R. (18)

The first inequality in (15) is required to avoid singularities at intercept when the
range becomes relatively small, and to confine the range to a maximum value. In
general, a reasonable assumption is to define the smallest achievable miss
distance rm to be equal to half of the largest target dimension [21]. The second
and third inequalities in (15) relate to limitations in velocities and accelerations
of both the missile and the target. Obviously, missile and target maneuverability
are constrained by their aerodynamics.

Definition 1 (Ultimately Bounded Trajectories) [22] Considering a nonlinear
system given as

dx/dt = f(x), (19)

where f : [0,∞)×D→ Rn is piecewise continuous in t and locally Lipschitz in x
on [0,∞)×D and D is a subset of Rn that contains the origin. The evolution of
the state x, or equivalently the trajectories, is said to be ultimately bounded
with ultimate bound b if there exists positive constants b and c, independent of
initial time t0 ≥ 0, and for every a ∈ (0, c), there is a T (a, b) ≥ 0 independent of
t0 such that

kx(t0)k ≤ a =⇒ kx(t)k ≤ b (20)

for all t ≥ t0 + T.
Systems satisfying Definition 1 have their trajectories approaching a known
region in the state space. Over time, the state trajectories will enter a ball with a
certain radius. If the guidance can be designed such that the missile-target
states, consisting of LOS angle and LOS rate, satisfy Definition 1, despite the
uncertain dynamics of the missile, then it is expected that the missile
performance will be improved when compared to classical guidance which does
not warrant ultimate boundedness for the nonlinear engagement. In other words,
with careful synthesis of the guidance scheme, the LOS rate can be made
arbitrarily close to zero, and hence miss distance is expected to be small based
on the collision triangle. The designer, however, has to be careful with the
magnitude of the resulting acceleration demands.

Definition 2 (Asymptotic stability)[22] Let x∗ = 0 be an equilibrium point for a
nonlinear system dx/dt = f(x) and D ⊂ Rn be a domain containing x∗. Let
V : D→ R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0}

8 DRDC Valcartier TM 2006—606



dV (x)/dt < 0 in D

Then, x∗ is asymptotically stable. The function V, called the Lyapunov function,
decreases along the trajectory x. Note: as t→∞, x→ x∗.
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3. Nonlinear homing guidance laws

In this section, the nonlinear homing guidance laws, with a general structure as
shown in Figure 3, are presented. In the figure, the hat denotes an estimated
variable. Two laws are proposed. One is labeled as nonlinear PNG (NLPNG),
whereas the other is denoted as nonlinear PNG with target acceleration
(NLPNG+at). The latter uses the target acceleration estimate whereas the
former does not.

Kinematics Guidance law Autopilot Missile

Roll
rate

Target Sensor &
Estimator

nm

nt λ, dλ/dt, 
r, dr/dt, 
d2r/dt2

Fin 
deflection 
command

λ, dλ/dt, 
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d2r/dt2
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^ ^
^ ^

^
^

ag
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λ, dλ/dt, 
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d2r/dt2

at

^ ^
^ ^

^
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Figure 3: Structure of nonlinear guidance

As stated in [1], if system lags, such as those of the missile body dynamics, the
autopilot and the seeker, are unaccounted for by the guidance law, there can
potentially result large miss distances. Furthermore, it is well known that igoring
target maneuvers in the design of a guidance law may yield relatively large miss
distances. In this memorandum, guidance laws taking into account system lags
and target maneuver are proposed. A two-step high-gain backstepping procedure
[17] is presented. First, a design based on idealized missile dynamics is carried
out. Then, the uncertain dynamics are introduced to finalize the guidance law.
The lag associated with the response time of the missile flight control is taken
into account in the second step of the guidance synthesis. Such two-step
approach leads to the following missile guidance law:

ag = (k + kτ − τ1
2
kvs
dλ

dt
tanλ) (μg − nm) + nm + xT PB

r
, (21)

k > 0, kτ ≥ τd1
2

(22)

kvs =

(
0 if dλdt sinλ ≥ 0
1 if dλdt sinλ < 0

(23)

with

μg = Nvcl
dλ
dt
+ g∗

³
r, dr

dt
, d

2r
dt2
,λ, dλ

dt
,bat´− r

cosλ
K

∙
x1
x2

¸
g∗
³
dr
dt
, d

2r
dt2
,λ, dλ

dt
,bat´ = r · g ³r, drdt , d2rdt2

,λ, dλ
dt
,bat´ / cosλ = bat

cosλ − 2dλdt drdt − d2r
dt2

tanλ

K =
£
k1 k2

¤ (24)
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and integer N > 0. In the above equation,

at = nt cosβ, am = nm cosλ. (25)

The reasons for using a high gain k are twofold. First, using a high gain instead
of the derivative of the auxiliary guidance law (μg) allows reducing the
computational complexity. Second, the high-gain loop dominates [17] the
uncertain term, which comprises the time constant of the flight dynamics, and
stability in the sense of Lyapunov can be guaranteed [22].

In the first step of the guidance synthesis, a control law μg is designed assuming
idealized flight control to bound the missile-target system state trajectories.
Then, in the second step, we backstep through the first-order dynamics (1) with
the objective of making nm behave as closely as possible to μg. In the second
step, non-ideal missile dynamics are used and the target acceleration estimate is
taken into account. The two-part synthesis uses the Lyapunov approach to
bound trajectories of x and (nm − μg).

The following subsections provide the details of the design steps. A proposition
describing the trajectories of the missile-target state obtained with the proposed
guidance schemes concludes the section.

3.1 Step 1: Synthesis of guidance law for idealized dynamics

Assume that flight control dynamics are ideal, i.e. ag = nm = am/ cosλ. μg is
used as a virtual guidance law that is instrumental to the synthesis of ag in Step
2. Therefore, in Step 1 only, μg = ag = nm. For brevity and for clarity of
demonstration, suppose that arguments of g∗ in (24) are available either as
measurements or estimates. Substitution of the state-feedback guidance law (24)
in (10) results in the linear system with bounded exogenous disturbance given as

dx

dt
= (A+B (K +Kr))x+

B

r
(at − bat) (26)

where A and B are given by (10), and

Kr =
h
0 −Nvclr

i
. (27)

To determine K, the following Lyapunov function candidate is proposed

V (x1, x2) =
1

2
xTPx (28)

where P is a symmetric positive definite matrix and xT =
£
x1 x2

¤
, x1, x2 are
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given by (7), (8). The time-derivative of V (x1, x2) is

dV

dt
(x1, x2) =

1

2
xT
³
P (Ar +BK) +

³
ATr +K

TBT
´
P
´
x+ xTPB

(at − bat)
r

.(29)

with Ar = A+BKr. From Assumption 3, Ar is a bounded uncertain matrix. Ar
can thus be expressed in a polytopic form with Ar and Ar representing the
vertices. Since (Ar, B) forms a controllable pair, i.e. the matrix
[B,ArB, ..., A

n−1
r B], where n is the dimension of Ar, is non-singular, then the

static state-feedback gain matrix K can be selected such that the eigenvalues of
(Ar +BK) are in the left-half of the complex plane if there exists a symmetric
positive definite matrix Q such that

P (Ar +BK) +
³
ATr +K

TBT
´
P = −Q (30)

holds for Ar ∈
n
Ar, Ar

o
[15]. Hence, equation (29) can be written as

dV (x1, x2)/dt ≤ −1
2
xTQx+ xT

PB

r
(at − bat). (31)

If the target is maneuvering with only delayed estimates bat(t) available to the
guidance law, the delay may be due to estimation computing for example, the
derivative of the Lyapunov function candidate given by (29) can be bounded,
using Assumption 2(a), as

dV

dt
(x1, x2) ≤ −1

2
xTQx+

°°°xTPB°°° at
rm
. (32)

In the present, the authors have opted for a linear matrix inequality (LMI)
characterization of the robust pole placement problem. As discussed in [15] and
[16], the choice of the gain matrix K such that (Ar +BK) has all its eigenvalues
with real parts to the left of −h < 0 for all r ∈ ]rm; rM [ can be expressed as the
following inequality:

P (Ar +BK) +
³
ATr +K

TBT
´
P + 2hP < 0 (33)

and solved for all Ar ∈
n
Ar, Ar

o
.

Then, by replacing (30) by (33), (32) becomes

dV

dt
(x1, x2) ≤ −λPm · h · kxk2 +

atσ
P
M

rm
kxk (34)
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where σPM and λPm are the largest singular value and the smallest eigenvalue of
P > 0 , respectively, and k·k is the Euclidean norm of its argument. Letting
θ ∈ ]0, 1[ , then

dV

dt
(x1, x2) ≤ − (1− θ)λPmh kxk2 for kxk >

σPMat
θλPmhrm

. (35)

From Theorem 4.18 (pp. 168-174) in [22], the system is then uniformly
ultimately bounded (see Definition 1); that is, time trajectories (x1, x2) enter a
ball B1 (O, b1) centered at O = (0, 0) and having radius b1 given as

b1 =
σPMat

θλPmhrm

s
λPM
λPm

(36)

where λPM is the largest eigenvalue of P . The ball B1 is positively invariant [22]
with respect to the closed-loop system (10) and (24). This means that once the
state enters the ball, it stays there for all future time instants. The compact set
B1 to which the system trajectories (x1, x2) converge can be reduced by
increasing h; that is, by selecting new static feedback gains according to (33)
which correspond to the eigenvalues of (Ar +BK) being farther to the left of the
complex plane.

3.2 Step 2: Guidance synthesis considering uncertain missile
dynamics

Missile dynamics in closed-loop with autopilot are taken into account and are
expressed as the first-order linear system (1), where the time constant is
uncertain and possibly time-varying, although bounded. From Step 1, the virtual
control law μg given by (24) stabilizes system (10), which can be written as

dx

dt
= Ax+B

µ
g − μg cosλ

r

¶
+
B cosλ

r
(μg − nm) . (37)

The new Lyapunov function candidate is taken to be

V (t, x1, x2, am) =
1

2
xTPx+

τ1 cosλ

2
(μg − nm)2 . (38)

Due to the boundedness of τ1, V (x1, x2, am) is bounded above and below by
positive definite functions of x and μg − nm. The time derivative of V (x1, x2, am)
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gives, after substitution of (1),

dV
dt
(t, x1, x2, am) ≤ − 1

2
xTQx+ xT PB

r
(at −bat) + τ1 cosλ (μg − nm)

³
dμg
dt
− dnm

dt
+ xT PB

τ1r

´
− 1
2

¡
dτ1
dt
cosλ+ τ1

dλ
dt
sinλ

¢
(μg − nm)2

≤ − 1
2
xTQx+ xT PB

r
(at −bat) + cosλ (μg − nm)³τ1 dμgdt + nm − ag + xT PB

r

´
− 1
2

¡
dτ1
dt
cosλ+ τ1

dλ
dt
sinλ

¢
(μg − nm)2

(39)

By considering the guidance law ag (21) with high gain k > 0, (39) becomes

dV
dt (t, x1, x2, am) ≤ −12xTQx+ xT PBr (at − bat)
+τ1

dμg
dt cosλ (μg − am)− k cosλ (μg − am)2 .

(40)

Backstepping usually makes use of signal derivatives, which can be
computationally cumbersome. The high-gain design of [17] allows to simplify
somewhat the procedure, although it guarantees only stability rather than
asymptotic stability (see Definition 2). Guaranteeing stability of the closed-loop
system allows to bound the magnitude of the state over all time instants, as
given by the ball. This is a useful achievement for the engagement as we are able
to bound the miss distance with our proposed nonlinear guidance law. From
(40), the derivative of the virtual control law dμg/dt is multiplied by the
bounded uncertainty τ1. However, the high-gain (k) design will prevent from
having to compute dμg/dt, and will also provide domination of the uncertain
term τ1 · dμg/dt. The derivative is therefore avoided with the actual guidance
law, which is particularly important in practice. It is important to point out
that, in this memorandum, a characterization of ultimate boundedness rather
than stability [17] is obtained. This is caused by the uncertain, although
bounded, term at − bat, and the fact μg does not vanish at (x,μg − am) = (0, 0).
The presence of the exogenous signal at, which is non-zero at (0, 0) prevents
dμg/dt from being linearly bounded by kxk , as required by the proof of
Proposition 6.3 in [17]. Rather, an affine bound in kxk is obtained in the present.
Let eμ = μg − am. Assuming the control gain matrix K is such that (33) is
satisfied, from (7), (9), (14) and (24), it is straightforward to find bounded,
continuous functions m1 and m2 such that

kμgk =
°°°°°atr +m1(r, drdt , d

2r

dt2
)x1 +m2(r,

dr

dt
,
d2r

dt2
)x2

°°°°° . (41)

Hence,

°°°°dμgdt
°°°° =

°°°°°1r datdt + dμgdr drdt + dμg
d(dr/dt)

d2r

dt2
+

dμg
d(d2r/dt2)

d3r

dt3
+
dμg
dx

dx

dt

°°°°° . (42)

Following the proof of Proposition 6.3 in [17], one can construct a compact set
ΩR = {(x, eμ) | V (x, eμ) ≤ VR} where VR is a level set defined by
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k(x, eμ)k ≤ R =⇒ V (x, eμ) ≤ VR for all (x, eμ) ∈ Ω, which is a desired compact
region of attraction. From Assumption 2, Assumption 3 and compactness of ΩR,
there exist c1, c2 > 0 such that for all {x, eμ} ∈ ΩR°°°°dμgdt

°°°° ≤ c1 + c2 kxk (43)

and k∗ΩR ∈ R such that for k > k∗ΩR > 0, the dV/dt is expressed as

dV

dt
(t, x1, x2, am) ≤ −hλPm kxk2+

at
rm
kxk kPk− k keμk2+ c2 kxk keμk+ c1 keμk(44)

and can be made semi-negative definite for x outside a ball to be defined in the
sequel. Completing the square of (44),

dV
dt (t, x1, x2, am) ≤ −hλ

P
m
2 kxk2 + atσPM

rm

°°°xT°°°− hλPm
2

³
kxk− c2

hλPm
keμk´2

−
³
k − c22

2hλPm

´
keμk2 + c1 keμk (45)

≤ −hλ
P
m

2
kxk2 + atσ

P
M

rm

°°°xT°°°− Ãk − c22
2hλPm

!
keμk2 + c1 keμk . (46)

Constant k is determined by a desired attraction region included in ΩR; that is,
the given compact set ΩR determines constants c1 and c2 which in turn force k

∗
ΩR

to be greater than or equal to
c22

2hλPm
. Following the same rationale as in Step 1,

consider 0 < θ < 1 and 0 < κ < 1 such that

dV

dt
(t, x1, x2, am) ≤ −hλ

P
m

2
(1− θ) kxk2 − c1 (1− κ) keμk2 (47)

is valid for kxk ≥ 2atσPM
λPmθhrm

and keμk ≥ c1
κ

³
k − c22

2hλPm

´−1
. From Theorem 4.18 (pp.

168-174) in [22], the latter development means that the system trajectory under
control law (21) and (24) in (x, eμ) converges in finite time (tf − t0 is finite) to a
ball centered at (0, 0) and of radius b2 given by

b2 = b
r
2

s
max

¡
λPM , τ1

¢
min

¡
λPm, τ1

¢ (48)

where br2 = max

µ
2atσPM
λPmθhrm

, c1κ

³
k − c22

2hλPm

´−1¶
. The ball is positively invariant [22]

with respect to the closed-loop system (1), (10), (14), (21) and (24).

Figure 4 shows a typical state trajectory. The terminal guidance is triggered at
time t0, whereas tf corresponds to actual flight time. At some time instant
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during the engagement, the state enters a ball of radius b2 and stays there.

μ

x
t0

tf

b2 ~μ

x
t0

tf

b2 ~

Figure 4: Missile-target trajectories

The following proposition states the qualitative property of the trajectories
obtained with the nonlinear guidance.

Proposition 1 Trajectories of the missile-target system given by (1), (10)-(14)
in closed-loop with the nonlinear guidance law defined by state feedback
(21)-(24) and solved using the LMI technique (33) are ultimately bounded with
an ultimate bound b2 given by (48). With unitary flight dynamics, trajectories of
(10) in closed-loop with (24) are ultimately bounded with bound b1 (36).

Proof:

Proof of Proposition 1 is based on a two-step backstepping procedure described
in [17] which is directly applied to the strict-feedback form system (1), (10)-(14).
First, when the flight control dynamics is considered as ideal, a Lyapunov
function candidate is proposed to prove the stability of (10)-(14) in closed-loop
with the virtual guidance law (24). Second, with first-order flight control
dynamics (1), the Lyapunov function candidate is appropriately augmented to
synthesize (21) so that the stability of (21)-(24) in closed loop with the plant can
be proved.

Remarks

1) In Step 1, if the target is not maneuvering, i.e. at = 0, then the target
acceleration estimate should be set to bat = 0. From (29),

dV

dt
(x1, x2) ≤ −1

2
xTQx (49)

and asymptotic stability of the equilibrium state is guaranteed since the
Lyapunov function candidate decreases on the trajectories x of system (10).

2) In Step 1, there exists a trade-off between the selection of a relatively small
radius b1 (36), and hence of the smallest upper bound of the final value of
(x1, x2) , and the admissible control effort. It should be noted that a value of b1
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close to zero induces a near-zero miss distance as (x1, x2) approach zero. When
states approach zero, the missile-target system is at or near equilibrium and LOS
rate is approximately zero, which is desired with homing guidance. Ideally, the
selection of b1 should take into account the potential saturation of fin deflection,
to avoid excessive acceleration demands on the missile. For instance, by selecting
the eigenvalues of (Ar +BK) to be far to the left of the complex plane (h is
large) then b1 is made small, and the convergence rate of the (x1, x2) trajectories
becomes faster at the expense of possible undesirably large transient signals.
Clearly, numerical simulations must be performed to determine values of K and
b1 satisfying a reasonable trade-off. Finally, it should be noted that the delay
induced by the target acceleration estimate, as described in Assumption 2(a), is
taken into account by the nonlinear guidance law by means of the bound at.
However, exact zero miss distance cannot be guaranteed.

3) Radius b2 can be decreased by tuning guidance law gain K such that h
increases. The same holds true for gain k. Parameters θ and κ can also be used
to decrease b2 at the expense of a fast convergence. As noticed in (2) for Step 1,
a trade-off exists between a small value of b2 and an undesirable control effort.

4) When flight control dynamics are modeled as unitary, the PNG law
(N + 2) vcldλ/dt with N > 0 is embedded in the guidance law μg.

5) The implementation of the guidance law (21), (24) requires the knowledge of
r, dr/dt, d2r/dt2,λ, dλ/dt and nm. Furthermore, estimate of the target
acceleration (bat) is needed. If the flight path angle β of the target remains small,
at can be considered equal to the normal acceleration nt.
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4. Numerical simulations

4.1 Numerical models and guidance laws

The proposed guidance law (21), (24), labeled as Nonlinear Proportional
Navigation Guidance (NLPNG), is simulated with more realistic second-order
flight control system dynamics, from commanded to actual accelerations, given as

am
ag
=

τ2s+ 1
s2

ω2
+ 2ξs

ω + 1
(50)

for which the nominal parameters [23] are given by (51) and the standard
deviations, based on uniform distributions, are given in (52). In (52), σω is the
standard deviation of the natural frequency ω, and σξ is the standard deviation
of the damping ratio ξ.

ω = 6.71 rad/s, ξ = 1.88, τ2 = −2.48 · 10−2 s (51)

σω = 1.15 rad/s, σξ = 5.7 · 10−2 (52)

A block diagram of the missile-target model used in the numerical simulations of
the terminal phase of the engagement is shown in Figure 5. The model comprises
missile-target kinematics, seeker dynamics, acceleration saturation, flight control
dynamics and guidance law. The terminal phase of the engagement is modeled
and simulated with the Matlab software [24].
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Figure 5: Block diagram of missile control system

The second-order system (50) with the numerical values of (51) has a time
constant of approximately τ = 0.56 s. However, the design and tuning of NLPNG
(21) to (24), is based on a first-order flight control dynamics given as
am/ag = 1/(τ1s+ 1). The missile-to-target range is assumed to be exactly given
by r = vc (tf − t) , vcl = 1000 m/s and d2r/dt2 = 0. The following parameters are
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used in (21), (24): gain N , which is the proportional navigation constant, is
selected to a large value of 5 for best PNG performance; state feedback gains,
which are calculated through standard pole-placement tools such that the two
poles of A+BK are equal to −0.5 (1± j) , are k1 = 0.32, k2 = −0.8 and k = 20.
The matrix P satisfying (33) is calculated to be P =

∙
1.35 7 · 10−4
7 · 10−4 4.17

¸
and

thus xTPBr ∼= 4.27(dλ/dt/r)/ cosλ. From (51)-(52), parameter uncertainties
give a maximum time constant τ1 of 0.9 s. τ1(t) is assumed to be slowly
time-varying, thus kτ ' 0. Furthermore, am is assumed to be available. The
first-order LOS rate measurement dynamics are given as

[dλm/dt] (s)/λ(s) =
s

s+ τs
(53)

where λm is the measured LOS angle, λ is true LOS angle, and τs = 0.1 s. Our
proposed nonlinear guidance law is compared against well-known guidance laws
by means of numerical simulations. The so-called neoclassical approach to the
guidance synthesis, as described in [19], is given as

ag(s)

[dλm/dt] (s)
= 5vcl

(0.2304s+ 1)2

(0.01s+ 1)2
(54)

where vcl = 1000 m/s. Guidance (54) is denoted as ZMDPNG in this
memorandum, the so-called zero-miss distance PNG. The optimal guidance law
(OGL), described in [25], is given by

ag(t) =
N(ζ)
t2go

(y(t) + tgo·dy/dt
+0.5bat(t)t2go − am(t)τ2d ³e−ζ + ζ − 1

´´ (55)

and

N(ζ) =
6ζ2(e−ζ+ζ−1)

2ζ3−6ζ2+6ζ+3−12ζe−ζ−3e−2ζ ,bat(t) = at(t− 0.2), tgo = tf − t,
ζ =

tgo
τd

(56)

where bat(t) is a delayed estimate of the target acceleration, tgo is the time-to-go
and τd ' 1.5τ1 is the design time constant, which is selected to account for the
lag induced by the flight control dynamics [26]. The same delayed acceleration
estimate is used for the implementation of the proposed NLPNG. The proposed
guidance law at the terminal phase (vcl ' constant ) requires measurements of
r,dr/dt,λ ,dλ/dt and nm, and estimation of target acceleration (bat). OGL
guidance requires signals y,dy/dt,am and bat whereas ZMDPNG needs only dλ/dt.
Before comparing the performances obtained with the proposed NLPNG,
ZMDPNG and OGL, the influence of the missile dynamics on the closed-loop
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behavior is determined. Here, guidance law μg (24) synthesized in Step 1 is used.
Note that this guidance law has been proved to stabilize the missile-target
system in the case of ideal missile dynamics μg = nm. Head-on engagement
(y = 0 m, dy/dt = 0 m/s) is considered. The guidance law μg is expected to
deteriorate when ideal missile dynamics are replaced by more realistic, slow
dynamics. As shown in Figure 6, where the guidance (24) is applied to a
first-order missile with model 1/(τs+ 1), the slower the missile time constant,
the larger the absolute value of the miss distance. In other words, when a
guidance law synthesized from idealized missile dynamics is placed in closed-loop
with non-idealized missile dynamics, the performance deteriorates. Further, the
loss in performance is more severe with longer time constants. The same
situation was observed for PNG in [1]. The lesson learned from this simulation is
that the guidance synthesis for a missile with non-ideal dynamics should include
a compensation, as provided by the full law ag (21), which is complementary to
(24) and developed in Step 2. More on this in the next subsection.
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Figure 6: Influence of missile dynamics on miss distance (at = 100 m/s
2)

4.2 Maneuvering target

Consider a maneuvering target with at = a
max
t sin(ωtt) m/s

2, where amaxt = 10g,
g = 9.81 m/s2, ωt = 1.7 rad/s. To test the robustness of the proposed guidance
law to variations in flight control dynamics, 150 simulation runs were carried out
for each time of flight tf ∈ {0.5, 1, 1.5, ..., 10} in seconds. In each simulation run,
the parameters ω and ξ (51)-(52) are uniformly distributed on [ω − 2,ω + 2] and
[ξ − 0.1, ξ + 0.1], respectively. Such variations in parameters are meant to
represent the lack of knolwedge in the true dynamic characteristics of the missile
under closed-loop control and to provide a formulation of the variations in the
flight envelope of the missile. It must be emphasized that if the uncertainties are
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too significant, a loss in guidance performance is expected.

The impact of an acceleration estimate is determined by considering NLPNG and
NLPNG +at,which denote the proposed guidance law with bat(t) = 0 andbat(t) = at(t− 0.2), respectively. The mean values for the absolute miss distances,
denoted as E (|y(tf )|) , and the standard deviations for the miss distances, given
as σy(tf ), are shown in Figures 7 and 8, respectively. Miss distances obtained
with classical PNG are not shown due to their prohibitively large values.
Therefore, it is clear that the PNG guidance is to be avoided in situations where
the target is maneuvering and missile uncertainties are present. If there is no
uncertainty in the missile dynamics and autopilot, it is known that PNG may
yield poor performance cite{Zarchan1.
Figure 7 illustrates the mean value of the absolute miss distances obtained with
NLPNG, NLPNG+at, OGL and ZMDPNG versus flight times (tf ). Guidance
laws NLPNG and NLPNG+at give similar miss distances, which are in general
smaller than those obtained with ZMDPNG and OGL. The similarities in the
responses obtained with NLPNG and NLPNG+at come from their controller
gains, which are large enough to attenuate the target acceleration, which is
modelled as an exogenous disturbance in our proposed formulation. However,
one advantage of NLPNG+at over the other techniques tested is that its
controller gains are time-invariant for a given tf , or estimated tf . This makes the
implementation of NLPNG simpler than that of OGL, making the former more
appealing than the latter for real-time computations. Furthermore, NLPNG does
not require an acceleration estimator. Figure 8 presents the standard deviations
obtained with the various guidance laws. The proposed guidance laws provide
the smallest standard deviations, except when the time of flight approaches zero.
For a relatively short tf , there is a trade-off to be made between acceptable miss
distance and high gain k of the nonlinear guidance.
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Figure 7: (a) Mean values E (|y(tf )|) for the absolute miss distances with
amaxt = 10g, and ωt = 1.7 rad/s; (b) zoom in over [0 m; 0.5 m]
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Figure 8: (a) Standard deviations σy(tf ) on the miss distances with a
max
t = 10g,

and ωt = 1.7 rad/s; (b) zoom in over [0 m; 0.1 m]

Figure 9 presents the miss distances for different values of ωt ∈ [0.1, 3] with
tf = 5 s and with nominal parameters ω and ξ. It is shown that the increase in
miss distance obtained with the proposed guidance, as ωt is increased, is less
severe than that obtained with OGL and ZMDPNG. A lesson to be learned from
the simulations is therefore that the combination of the high-gain term
k (μg − nm) , compensating for the uncertain missile dynamics, with the
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estimation of the target acceleration seems to be crucial in obtaining a relatively
small miss distance, especially with a large ωt. As seen on Figure 9, the miss
distance obtained with NLPNG, the guidance law that does not use signal bat,
becomes larger with ωt in a manner similar to that of OGL and ZMDPNG,
particularly for ωt > 2.5 rad/s.
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Figure 9: Absolute value of miss distance for different values of ωt with tf = 5,
amaxt = 10 g and nominal parameters ω and ξ

Absolute values of miss distances are shown in Figure 10. There,
amaxt ∈ [5 g, 10 g], tf = 5 s, ωt = 1.7 rad/s and nominal values are used for the
parameters ω and ξ. Figure 10 suggests that using estimates of the target
acceleration in the guidance law, as is the case for NLPNG+at, can result in
relatively small miss distances for aMt ≥ 12 g; that is, for amaxm /amaxt < 1.6.
However, performance deterioration could occur with the presence of a large
delay, due to the estimation process, or from the absence of an estimate when
amaxt is large. This phenomenon can be explained from the Lyapunov-based
synthesis presented in this memorandum. The ultimate bound b2 is an increasing
function of at, which is an upper bound on |bat(t)− at(t)|, from Assumption 2. A
good estimate of at(t) therefore leads to smaller |bat(t)− at(t)| and b2, which is
expected to result in a reduced miss distance. From Figures 9 and 10, it is clear
that using a bounded bat(t) in the nonlinear guidance robustifies the performance
of the closed-loop system with respect to variations in target acceleration, which
is especially important in the case of pursuer-evader maximum maneuverability
ratio amaxm /amaxt [18] close to unity and large pulsation ωt. The reader is reminded
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that a maneuverability ratio close to unity indicates that target and pursuer have
an acceleration of the same order of magnitude. In such a situation, the intercept
is difficult to achieve. However, when amaxm /amaxt is relatively large and ωt is
small, meaning low target maneuverability, Figures 7, 9 and 10 suggest that
using the bounded estimate bat in the guidance law is not required to improve
performance.
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Figure 10: (a) Absolute value of miss distance for different values of amaxt (g)
with tf = 5,ωt = 1.7 rad/s and nominal parameters ω and ξ; (b) zoom in over [0
m, 3 m]

Figure 11 shows mean values of the energy consumed E
³R tf
0 a2m(τ)dτ

´
for the set

of tf . In the figure, the energy consumption of the proposed guidance remains
slightly under that of OGL for tf ≥ 3 s while that of ZMDPNG is the smallest
among the guidance laws tested, a performance already noticed in [19]. The
higher energy consumption of NLPNG is a drawback, leading to a potential
increase in drag and a reduced firing envelope when compared to ZMDPNG. It is
important to point out that OGL has not been designed to take into account the
parametric uncertainties and that the models used in the numerical simulations
differ from those involved in OGL synthesis. Thus, sub-optimal performance is
expected from OGL.

Figure 12 shows the missile accelerations for tf = 5 s. The results are obtained
with ωt = 1.7 rad/s and with nominal parameters ω and ξ. Accelerations
obtained with NLPNG+at and NLPNG saturate in the early stage of the
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engagement. Saturation is, to some extent expected due to the high gains
involved in the proposed guidance, especially in the early part of the terminal
phase, as the proposed guidance is an asymptotic-type design with control inputs
being of largest magnitude early on. Evidently, the use of high gains can
undesirably amplify signal noise. However, the fact NLPNG+at and NLPNG
result in non-saturating accelerations near the end of the engagement could
potentially allow the missile to intercept a maneuverable target by having the
necessary capacity to react near the end of the engagement. Therefore, a
theoretical proof of stability and performance in presence of noise and saturation
could potentially be obtained by the application of advanced backstepping
techniques, such as those described in [27], [28].
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Figure 12: Comparison of actual missile accelerations with ωt = 1.7 rad/s,
amaxt = 10 g and nominal parameters ω and ξ
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5. Concluding remarks

This technical memorandum presented a nonlinear guidance law that ensures
ultimate boundedness of the missile-target system trajectories when the estimate
of target acceleration is uncertain, although bounded in magnitude, and the
missile dynamics in closed-loop with the autopilot are uncertain. The nonlinear
guidance, which takes into account the nonlinear relative kinematics between the
missile and the target, is divided into two steps. In the first step, a state-feedback
law is obtained from a linear matrix inequality pole characterization, assuming
ideal missile dynamics in closed-loop with the autopilot; that is, a zero time
constant between commanded and actual accelerations. In the second step, the
guidance law is extended to take into account the uncertain dynamics by means
of a high-gain backstepping approach. As described in the literature, high-gain
backstepping prevents from having to compute the derivative of the virtual
control law, which could amplify high-frequency noise. The nonlinear guidance
law was validated by means of a numerical example which illustrated a single
missile pursuing a single, maneuvering target during the terminal phase of the
engagement. Terminal phase is when homing guidance, such as PNG and the
proposed nonlinear guidance law, are applied. The proposed nonlinear guidance
law compared advantageously with other well-known guidance laws in terms of
miss distance, even in the presence of relatively slow missile dynamics. Numerical
simulations showed that the proposed guidance law may require high-amplitude
accelerations early on during the terminal phase, whereas no saturation is
exhibited near the end of the engagement. In the future, a detailed stability
analysis involving measurement noise should be carried out, an estimator of
target state could be devised, and a fully nonlinear engagement model could be
used in the simulations.
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List of
symbols/abbreviations/acronyms/initialisms

PNG Proportional navigation guidance
LOS Line of sight
LMI Linear matrix inequalities
τ1 Time constant of missile flight control system
nm Missile acceleration normal to LOS
ag Commanded acceleration for missile
am Missile acceleration perpendicular to fixed x-axis
r Range between missile and target
vcl Closing velocity
vm Missile speed
λ LOS angle
nt Target normal acceleration
vt Target speed
y Relative separation between missile and target perpendicular to fixed x-axis
x = [x1, x2]

T State variables for missile-target kinematics
λ0 Fixed LOS angle at equilibriumbat Estimate of target acceleration
at Bound on target acceleration
V Lyapunov function
k Nonlinear guidance gain
kvs Boolean used in nonlinear guidance law
μg Auxiliary or virtual guidance law
P Positive definite real matrix
N Integer used in nonlinear guidance law
k·k Euclidean norm
B1 Compact set to which trajectories convergeeμ μg − am
ω Natural frequency associated with poles of second-order flight control
ξ Damping ratio associated with poles of second-order flight control
σω Standard deviation associated with ω
σξ Standard deviation associated with ξ
NLPNG Proposed nonlinear proportional navigation guidance law not using at
NLPNG+at Proposed nonlinear proportional navigation guidance law with at input
ZMDPNG Zero miss distance proportional navigation guidance
OGL Optimal guidance law
ωt Target pulsation
E(·) Mean value
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